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Options Engineering with
Applications

1. Introduction

This chapter discusses traditional option strategies from the financial engineering perspective and
provides market-based examples. It then moves on to discuss exotic options. We are concerned
with portfolios and positions that are taken with a precisegain-loss profilein mind. The players
consciously take risks in the hope of benefiting or protecting themselves from an expected
movement in a certain risk factor. Most investor behavior is of this kind. Investors buy a stock
with a higher (systematic) risk, in anticipation of higher returns. A high-yield bond carries
a higher default probability, which the bond holder is willing to bear. For all the different
instruments, there are one or more risk factors that influence the gains and losses of the position
taken. The investor weighs the risks due to potentially adverse movements in these factors
against the gains that will result, if these factors behave in the way the investor expected. Some
of the hedging activity can be interpreted in a similar way. This chapter deals with techniques
and strategies that use options in doing this. We consider classical (vanilla) as well as exotic
options tools.

According to an important theorem in modern finance, if options of all strikes exist, carefully
selected option portfolios can replicateanydesired gain-loss profile that an investor or a hedger
desires. We can synthetically create any asset using a (static) portfolio of carefully selected
options,1 since financial positions are taken with a payoff in mind. Hence, we start our discussion
by looking at payoff diagrams.

1.1. Payoff Diagrams

Let xt be a random variable representing the time-t value of a risk factor, and letf(xT ) be a
function that indicates the payoff of anarbitrary instrument at “maturity” dateT , given the value

1 This is a theoretical result, and it depends on options of all strikes existing. In practice this is not the case. Yet the
result may still hold as an approximation.
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of xT at timeT > t. We callf(xT ) a payoff function. The functional form off(.) is known if
the contract is well defined.2 It is customary in textbooks to represent the pair{f(xT ), xT } as
in Figures 10-1a or 10-1b. Note that, here, we have a nonlinear upward sloping payoff function
that depends on the values assumed byxT only. The payoff diagram in Figure 10-1a is drawn
in a completely arbitrary fashion, yet, it illustrates some of the general principles of financial
exposures. Let us review these.

First of all, for fairly priced exposures that have zero value of initiation,netexposures to a
risk factor,xT , must be negative forsomevalues of the underlying risk. Otherwise, we would be
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2 Herext can be visualized as akxl vector of risk factors. To simplify the discussion, we will proceed as if there
is a single risk factor, and we assume thatxt is a scalar random variable.
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making positive gains, and there would be no risk of losing money. This would be an arbitrage
opportunity. Swap-type instruments fall into this category. If, on the other hand, the final payoffs
of the contract are nonnegative for all values ofxT , the exposure has a positive value at initiation,
and to take the position an upfront payment will have to be made. Option positions have this
characteristic.3

Second, exposures can be convex, concave, or linear with respect toxT , and this has rele-
vance for an investor or market professional. The implication of linearity is obvious: the sensi-
tivity of the position to movements inxT is constant. The relevance of convexity was discussed
in Chapters 8 and 9. With convexity, movements in volatility need to be priced in, and again
options are an important category here.

Finally, it is preferable that the payoff functionsf(xT ) dependonlyon the underlying risk,
xT , and do not move due to extraneous risks. We saw in Chapters 8 and 9 that volatility positions
taken with options may not satisfy this requirement. The issue will be discussed in Chapter 14.

1.1.1. Examples of xt

The discussion thus far dealt with an abstract underlying,xt. This underlying can be almost any
risk the human mind can think of. The following lists some well-known examples ofxt.

• Variousinterest rates. The best examples are Libor rates and swap rates. But the com-
mercial paper (CP) rate, the federal funds rate, the index of overnight interest rates (an
example of which is EONIA, Euro Over Night Index Average), and many others are also
used as reference rates.

• Exchange rates, especially major exchange rates such as dollar-euro, dollar-yen, dollar-
sterling (“cable”), and dollar-Swiss franc.

• Equity indices. Here also the examples are numerous. Besides the well-known U.S.
indices such as the Dow, Nasdaq, and the S&P500, there are European indices such as
CAC40, DAX, and FTSE100, as well as various Asian indices such as the Nikkei 225
and emerging market indices.

• Commoditiesare also quite amenable to such positions. Futures on coffee, soybeans,
and energy are other examples forxT .

• Bond price indices.One example is the EMBI + prepared by JPMorgan to track emerging
market bonds.

Besides these well-known risks, there are more complicated underlyings that, nevertheless,
are central elements in financial market activity:

1. The underlying to the option positions discussed in this chapter can representvolatility
or variance. If we let the percentage volatility of a price, at timet, be denoted byσt, then
the timeT value of the underlyingxT may be defined as

xT =
∫ T

t

σ2
uS2

udu (1)

whereSt may be any risk factor. In this case,xT represents thetotal varianceof St during
the interval[t, T ]. Volatility is the square root ofxT .

2. Thecorrelationbetween two risk factors can be traded in a similar way.
3. The underlying,xt, can also represent thedefault probabilityassociated with a counter-

party or instrument. This arises in the case of credit instruments.

3 The market maker will borrow the needed funds and buy the option. Position will still have zero value at initiation.
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4. The underlying can represent the probability of an extraordinaryeventhappening. This
would create a “Cat” instrument that can be used to buy insurance against various
catastrophic events.

5. The underlying,xt, can also be anonstorable itemsuch as electricity, weather, or
bandwidth.

Readers who are interested in the details of such contracts or markets should consult Hull (2008).
In this chapter, we limit our attention to the engineering aspects of option contracts.

2. Option Strategies

We divide the engineering of option strategies into two broad categories. First, we consider
the classical option-related methods. These will cover strategies used by market makers as
well as retail investors. They will themselves be divided into two groups, those that can be
labeleddirectionalstrategies, and those that relate to views on thevolatility of some underlying
instrument. The second category involves exotic options, which we consider as more efficient
and sometimes cheaper alternatives to the classical option strategies. The underlying risks can
be any of those mentioned in the previous section.

2.1. Synthetic Long and Short Positions

We begin with strategies that utilize options essentially as directional instruments, starting with
the creation oflongandshort positionson an asset. Options can be used to create these positions
synthetically.

Consider two plain vanilla options written on aforwardpriceFt of a certain asset. The first
is a short put, and the second a long call, with pricesP (t) andC(t) respectively, as shown in
Figure 10-2. The options have the same strike priceK, and the same expiration timeT .4 Assume
that the Black-Scholes conditions hold, and that both options are of European style. Importantly,
the underlying asset does not have any payouts during[t, T ].Also, suppose the appropriate short
rate to discount future cash flows is constant atr.

Now consider the portfolio

{1 Long K-Call, 1 Short K-Put} (2)

At expiration, the payoff from this portfolio will be the vertical sum of the graphs in Figure 10-2
and is as shown in Figure 10-3. This looks like the payoff function of along forward contract
entered into atK. If the options were at-the-money (ATM) at timet, the portfolio would exactly
duplicate the long forward position and hence would be an exact synthetic. But there is a
close connection between this portfolio and the forward contract, even when the options are
not ATM.

At expiration timeT , the value of the portfolio is

C(T ) − P (T ) = FT − K (3)

whereFT is the time-T value of the forward price. This equation is valid because atT , onlyone
of the two options can be in-the-money. Either the call option has a value ofFT − K while the
other is worthless, or the put is in-the-money and the call is worthless, as shown in Figure 10-2.

4 Short calls and long puts lead to symmetric results and are not treated here.



2. Option Strategies 281

Payoff from
long K-call

Payoff from
short K-put

Expiration FT
Put expires worthless here

0

Call is worth
(FT 2 K ) at expiration

FT
FTK

K
0 FT

Gain

Gain

Loss

Loss

FIGURE 10-2

Joint payoff
(long call, short put)

0 FT
K

1

2

FIGURE 10-3



282 C H A P T E R 10. Options Engineering with Applications

Subtract the time-t forward price,Ft, from both sides of this equation to obtain

C(T ) − P (T ) + (K − Ft) = FT − Ft (4)

This expression says that the sum of the payoffs of the long call and the short putplus(K −Ft)
units of cash should equal the time-T gain or loss on a forward contract entered into atFt, at
time t.

Take the expectation of equation (4). Then the timet value of the portfolio,

{1 Long K-Call, 1 Short K-Put, e−r(T−t)(K − Ft) Dollars} (5)

should be zero att, since credit risks and the cash flows generated by the forward and the
replicating portfolio are the same. This implies that

C(t) − P (t) = e−r(T−t)(Ft − K) (6)

This relationship is calledput-call parity.It holds for European options. It can be expressed in
terms of the spot price,St, as well. Assuming zero storage costs, and no convenience yield:5

Ft = er(T−t)St (7)

Substituting in the preceding equation gives

C(t) − P (t) = (St − e−r(T−t)K) (8)

Put-call parity can thus be regarded as another result of the application of contractual equations,
where options and cash are used to create a synthetic for theSt. This situation is shown in
Figure 10-4.
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FIGURE 10-4

5 Here ther is the borrowing cost and, as discussed in Chapter 4, is a determinant of forward prices. The convenience
yield is the opposite of carry cost. Some stored cash goods may provide such convenience yield and affectFt.
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2.1.1. An Application

Option market makers routinely use the put-call parity in exploiting windows of arbitrage
opportunities. Using options, market makers construct synthetic futures positions and then trade
them against futures contracts. This way, small and temporary differences between the synthetic
and the true contract are converted into “riskless” profits. In this section we discuss an example.

Suppose, without any loss of generality, that a stock is trading at

St = 100 (9)

and that the market maker can buy and sell at-the-money options that expire in 30 days. Suppose
also that the market maker faces a funding cost of 5%. The stock never pays dividends and there
are no corporate actions.

Also, and this is thereal-life part, the market maker faces a transaction cost of 20 cents per
traded option and a transaction cost of 5 cents per traded stock. Finally, the market maker has
calculated that to be able to continue operating, he or she needs a margin of .25 cent per position.
Then, we can apply put-call parity and follow theconversionstrategy displayed in Figure 10-5.

Borrow necessary funds overnight for 30 days, and buy the stock at priceSt. At the same
time, sell theSt-call and buy theSt-put that expires in 30 days, to obtain the position
shown in Figure 10-5.

The position isfully hedged, as any potential gains due to movement inSt will cover the
potential losses. This means that the only factors that matter are thetransaction costsand any
price differentialsthat may exist between the call and the put. The market maker will moni-
tor the difference between the put and call premiums and take the arbitrage position shown in
Figure 10-5 if this difference is bigger than the total cost of the conversion.

Example:

SupposeSt = 100, and 90-day call and put options trade actively. The interest cost is 5%.
A market maker has determined that the call premium,C(t), exceeds the put premium,
P (t), by$2.10:

C(t) − P (t) = 2.10 (10)

The stock will be purchased using borrowed funds for 90 days, and the ATM put is
purchased and held until expiration, while the ATM call is sold. This implies a funding
cost of

100(.05)
(

90
360

)
= $1.25 (11)

Add all the costs of the conversion strategy:

Cost per security $

Funding cost 1.25
Stock purchase .05
Put purchase .20
Call sale .20
Operating costs .25

Total cost 1.95
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The market maker incurs a total cost of$1.95. It turns out that under these conditions,
the net cash position will be positive:

Net profit = 2.10 − 1.95 (12)

and the position is worth taking.

If, in the example just discussed, the put-call premium difference is negative, then the market
maker can take the opposite position, which would be called areversal.6

2.1.2. Arbitrage Opportunity?

An outside observer may be surprised to hear that such “arbitrage” opportunities exist, and that
they are closely monitored by market makers on the trading floor. Yet, such opportunities are
availableonlyto market makers on the “floor” and may not even constitute arbitrage in the usual
sense.

This is because of the following: (1) Off-floor investors pay much higher transactions costs
than the on-floor market makers. Total costs of taking such a position may be prohibitive for off-
floor investors. (2) Off-floor investors cannot really make asimultaneousdecision to buy (sell)
the underlying, and buy or sell the implied puts or calls to construct the strategy. By the time these
strategies are communicated to the floor, prices could move. (3) Even if such opportunities are
found, net gains are often too small to make it worthwhile to take such positions sporadically. It
is, however, worthwhile to a market maker who specializes in these activities. (4) Finally, there
is also a serious risk associated with these positions, known as thepin risk.

2.2. A Remark on the Pin Risk

It is worthwhile to discuss thepin risk in more detail, since similar risks arise in hedging and
trading some exotic options as well. Suppose we put together aconversionat 100, and waited
90 days until expiration to unwind the position. The positions will expire some 90 days later
during a Friday. Suppose at expirationSt is exactly 100. This means that the stock closes exactly
at the strike price. This leads to a dilemma for the market maker.

The market maker owns a stock. If he or she doesnot exercise the long put and if the short
call is not assigned (i.e., if he or she does not get to sell atK exactly), then the market maker
will have an open long position in the stock during the weekend. Prices may move by Monday
and he or she may experience significant losses.

If, on the other hand, the market maker does exercise the long put (i.e., he or she sells the
stock atK) and if the call is assigned (i.e., he or she needs to deliver a stock atK), then the
market maker will have a short stock position during the weekend. These risks may not be great
for an end investor who takes such positions occasionally, but they may be substantial for a
professional trader who depends on these positions. There is no easy way out of this dilemma.
This type of risk is known as the pin risk.

The main cause of the pin risk is the kink in the expiration payoff atST = K.Akink indicates
a sudden change in the slope—for a long call, from zero to one or vice versa. This means that even
with small movements inSt, the hedge ratio can be either zero or one, and the market maker
may be caught significantly off guard. If the slope of the payoff diagram changed smoothly,
then the required hedge would also change smoothly. Thus, a risk similar to pin risk may arise
whenever thedeltaof the instrument shows discrete jumps.

6 This is somewhat different from the upcoming strategy known as risk reversals.



286 C H A P T E R 10. Options Engineering with Applications

2.3. Risk Reversals

A more advanced version of the synthetic long and short futures positions is known asrisk
reversals. These are liquid synthetics especially in the foreign exchange markets, where they
are traded as a commodity. Risk reversals are directional positions, but differ in more than one
way from synthetic long-short futures positions discussed in the previous section.

The idea is again to buy and sell calls and puts in order to replicate long and short futures
positions—but this time using options withdifferentstrike prices. Figure 10-6 shows an example.
The underlying isSt.The strategy involves a short put struck atK1, and a long call with strikeK2.

0 St
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K1 K2

K2

0 St

ST

Long call
at expiration

0 ST

Short put
at expiration
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Risk-reversal at expiration

Long vol

Short vol
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FIGURE 10-6
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Both options are out-of-the-money initially, and theSt satisfies

K1 < St < K2 (13)

Since strikes can be chosen such that the put and call have the same premium, the risk reversal
can be constructed so as to have zero initial price.

By adding vertically the option payoffs in the top portion of Figure 10-6, we obtain the
expiration payoff shown at the bottom of the figure. If, at expiration,ST is betweenK1 andK2,
the strategy has zero payoff. If, at expiration,ST < K1, the risk reversal loses money, but under
K2 < ST , it makes money. Clearly, what we have here is similar to a long position but the
position is neutral for small movements in the underlying starting fromSt. If taken naked, such
a position would imply a bullish view onSt.

We consider an example from foreign exchange (FX) markets where risk reversals are traded
as commodities.

Example:

Twenty-five delta one-month risk reversals showed a stronger bias in favor of euro
calls (dollar puts) in the last two weeks after the euro started to strengthen against
the greenback.

Traders said market makers in EUR calls were buying risk reversals expecting further
euro upside. The one-month risk reversal jumped to 0.91 in favor of euro calls Wednes-
day from 0.3 three weeks ago. Implied volatility spiked across the board. One-month
volatility was 13.1% Wednesday from 11.78% three weeks ago as the euro appreciated
to USD1.0215 from USD1.0181 in the spot market.

The 25-delta risk reversals mentioned in this reading are shown in Figure 10-7a. The
risk reversal is constructed using two options, a call and a put. Both options are out-of-the-money
and have a “current”delta of 0.25. According to the reading, the 25-delta EUR call is more
expensive than the 25-deltaEUR put.

2.3.1. Uses of Risk Reversals

Risk reversals can be used as “cheap” hedging instruments. Here is an example.

Example:

A travel company in Paris last week entered a zero-cost risk reversal to hedge U.S. dollar
exposure to the USD. The company needs to buy dollars to pay suppliers in the U.S.,
China, Indonesia, and South America.

The head of treasury said it bought dollar calls and sold dollar puts in the transac-
tion to hedge 30% of its USD200–300 million dollar exposure versus the USD. The
American-style options can be exercised between November and May.

The company entered a risk reversal rather than buying a dollar call outright because it
was cheaper. The head of treasury said the rest of its exposure is hedged using different
strategies, such as buying options outright. (Based on an article in Derivatives Week.)

Here we have a corporation that has EUR receivables from tourists going abroad but needs
to make payments to foreigners in dollars. Euros are received at timet, and dollars will be paid
at some future dateT , with t < T . The risk reversal is put together as a zero cost structure,
which means that the premium collected from selling the put (on the USD) is equal to the call
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premium on the USD. For small movements in the exchange rate, the position is neutral, but for
large movements it represents a hedge similar to a futures contract.

Of course, such a position could also be taken in the futures market. But one important
advantage of the risk reversal is that it is “composed” of options, and hence involves, in general,
no daily mark-to-market adjustments.

2.4. Yield Enhancement Strategies

The class of option strategies that we have studied thus far is intended for creating synthetic
short and long futures positions. In this section, we consider option synthetics that are said to
lead toyield enhancementfor investment portfolios.

2.4.1. Call Overwriting

The simplest case is the following. At timet, an investor takes a long position in a stock with
current priceSt, as shown in Figure 10-8. If the stock price increases, the investor gains; if the
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price declines, he or she loses. The investor has, however, asubjectiveexpected return,̂Rt, for
an interval of timeΔ, that can be expressed as

R̂t = EP̂
t

[
St+Δ − St

St

]
(14)

where P̂ is a subjective conditional probability distribution for the random variableSt+Δ.
According to the formula, the investor is expecting a gain ofR̂t during periodΔ. The question
is whether we can provide ayield-enhancingalternative to this investor. The answer depends
on what we mean by “yield enhancement.”

Suppose we ask the investor the following question: “What is the maximum gain you would
like to make on this stock position?” and the investor indicatesSmax as the price he or she is
willing to sell the stock and realize the “maximum” desired gain:

(Smax − St) (15)

Next, consider a call optionC(t)max that has the strike

K = Smax (16)

and that expires atT = t + Δ. This option sells forC(t)max at timet. We can then recommend
the following portfolio to this investor:

Yield enhanced portfolio = {Long St, Short C(t)max} (17)
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Assuming zero interest rates, at timeT = t + Δ, this portfolio has the following value,Vt+Δ:

Vt+Δ =
{

C(t)max + St+Δ Option not exercised
C(t)max + St+Δ − (St+Δ − Smax) = C(t)max + Smax Option exercised

(18)

According to this, if at expiration, the price stays below the levelSmax, the investor “makes”
an extraC(t)max dollars. IfSt+Δ exceeds theSmax, the option will be exercised, and the gains
will be truncated atSmax + C(t)max. But, this amount is higher than the price at which this
investor was willing to sell the stock according to his or her subjective preferences. As a result,
the option position has enhanced the “yield” of the original investment. However, it is important
to realize that what is being enhanced is not the objective risk-return characteristics, but instead,
thesubjectiveexpected returns of the investor.

Figure 10-8 shows the situation graphically. The top portion is the long position in the
stock. The bottom profile is the payoff of the short call, written at strikeSmax. If St+Δ exceeds
this strike, the option will be in-the-money and the investor will have to surrender his or her
stock, worthSt+Δ dollars, at a price ofSmax dollars. But, the investor waswilling to sell
at Smax anyway. The sum of the two positions is illustrated in the final payoff diagram in
Figure 10-9.

This strategy is calledcall overwritingand is frequently used by some investors. The fol-
lowing reading illustrates one example. Fund managers who face a stagnant market use call
overwriting to enhance yields.

Example:

Fund manager motivation for putting on options strategies ahead of the Russell indices
annual rebalance next month is shifting, say some options strategists.

“The market has had no direction since May last year,” said a head of equity derivatives
strategy in New York. Small cap stocks have only moved up slightly during the year, he
added.

Fund managers are proving increasingly willing to test call overwriting strategies for
the rebalance as they seek absolute returns, with greater competition from hedge funds
pushing traditional fund managers in this direction, [a]head of equity derivatives strategy
said. Employing call overwriting strategies—even though they suppress volatility levels—
looks attractive, because the worst outcome is that they outperform the stock on the
downside. As such, it can help managers enhance their returns. (IFR, Issue 1433, May
11, 2002.)
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The situation described in this reading is slightly more complicated and would not lend itself
to the simple call overwriting position discussed earlier. The reading illustrates the periodic and
routine rebalancing that needs to be performed by fund managers. Many funds “track” well-
known indices. But, these indices are periodically revised. New names enter, others leave, at
known dates. A fund manager who is trying to track a particular index, has to rebalance his or
her portfolio as indices are revised.

3. Volatility-Based Strategies

The first set of strategies dealt withdirectionaluses of options. Option portfolios combined with
the underlying were used to take aviewon the direction of the underlying risk. Now we start
looking at the use of options from the point of view of volatility positioning. The strategy used
in putting together volatility positions in this section is the following: First, we develop astatic
position that eliminates exposure to market direction. This can be done usingstraddlesand their
cheaper version,strangles. Second, we combine strangle and straddle portfolios to get more
complicated volatility positions, and to reduce costs.

Thus, the basic building blocks of volatility positions considered in this section are straddles
and strangles. The following example indicates how an option position is used to take aview on
volatility, rather than the price of the underlying.

Example:

An Italian bank recommended the following position to a client.We will analyze what this
means for the client’s expectations [views] on the markets. First we read the episode.

“A bank last week sold 4% out-of-the-money puts and calls on ABC stock, to generate
a premium on behalf of an institutional investor. The strangle had a tenor of six weeks.
. . . The strategy generated 2.5% of the equity’s spot level in premium.

At the time of the trade, the stock traded at roughly USD1,874.6. Volatilities were at
22% when the options were sold. ABC was the underlying, because the investor does not
believe the stock will move much over the coming weeks and thus is unlikely to break the
range and trigger the options.” (Based on an article in Derivatives Week)

Figure 10-10 shows the payoff diagram of these option positions at expiration. Adding
the premiums received at the initial point we get the second diagram in the bottom part of
the figure. This should not be confused with the anticipated payoff of the client. Note that
the eventual objective of the client is to benefit from volatility realizations. The option
position is only a vehicle for doing this.

We can discuss this in more detail. The second part of Figure 10-10 shows that at
expiration, the down and up breakeven points for the position are 1,762 and 1,987,
respectively. These are obtained by subtracting and adding the$37.5 received from the
strangle position, to the respective strike prices.

But the reading also gives the implied volatility in the market. From here we can
use the square root formula and calculate the implied volatility for the period under
consideration

σSt · Δ = .22

√
6
52

1874.6 = 140.09 (19)

Note that the breakeven points are set according to 4% movements toward either side,
whereas the square root formula gives 7.5% expected movements to either side.
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According to this, the client who takes this position expects the realized volatility to be
significantly less than the 7.5% quoted by the market. In fact, the client expects volatility
to be somewhat less than 4%.

This brings us to a formal discussion of strangles and straddles, which form the main building
blocks for classical volatility positions.

3.1. Strangles

Assume that we sell (buy) two plain vanilla, European-style options withdifferent strikeson
the assetSt. The first is a put, and has strikeKp; the second is a call, and has strikeKc, with
Kp < Kc. Suppose at the time of purchase, we haveKp < St0 < Kc. The expiration date isT .
This position discussed in the previous example is known as astrangle. Because these options
are sold, the seller collects a premium, at timet, of

C(t) + P (t) (20)

The position makes money if, by expiration,St has moved by a “moderate” amount, otherwise
the position loses money. Clearly, this way of looking at a strangle suggests that the position
is static. A typical shortstrangle’s expiration payoff is shown in Figure 10-11. The same figure
indicates the value of the position at timet, when it was initially put in place.
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3.1.1. Uses of Strangles

The following is an example of the use of strangles from foreign exchange markets. First there
is a switch in terminology: Instead of talking about options that are out-of-the-money byk%
of the strike, the episode uses the terminology “10-deltaoptions.” This is the case because, as
mentioned earlier, FX markets like to trade 10-delta, 25-deltaoptions, and these will be more
liquid than, say, an arbitrarily selectedk% out-of-the-money option.

Example:

A bank is recommending its clients to sell one-month 10-delta euro/dollar strangles to
take advantage of low holiday volatility. The strategists said the investors should sell
one-month strangles with puts struck at USD1.3510 and calls struck at USD1.3610. This
will generate a premium of 0.3875% of the notional size. Spot was trading at USD1.3562
when the trade was designed last week. The bank thinks this is a good time to put the
trade on because implied volatility traditionally falls over Christmas and New Years,
which means spot is likely to stay in this range. (Based on Derivatives Week)

This is a straightforward use of strangles.According to the strategist, the premium associated
with the FX options implies a volatility that is higher than the expected futurerealizedvolatility
during the holiday season due to seasonal factors. If so, the euro/dollar exchange rate is likely
to be range-bound, and the options used to create the strangle will expire unexercised.7

3.2. Straddle

A straddle is similar to a strangle, except that the strike prices,Kp andKc, of the constituent
call and put options sold (bought), areidentical:

Kp = Kc (21)

7 Clearly, the issue about the seasonal movement in volatility is open to debate and is an empirically testable
proposition, but it illustrates some possible seasonality left in the volatility of the data.
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Let the underlying asset beSt, and the expiration time beT . The expiration payoff and time
value of a long straddle are shown in Figure 10-12. The basic configuration is similar to a long
strangle. One difference is that a straddle willcost more. At the time of purchase, an ATM
straddle is more convex than an ATM strangle, and hence has “maximum”gamma.

3.2.1. Static or Dynamic Position?

It is worthwhile to emphasize that the strangle or straddle positions discussed here arestatic, in
the sense that, once the positions are taken, they are notdelta-hedged. However, it is possible to
convert them into dynamic strategies. To do this, we woulddelta-hedge the position dynamically.
At initiation, an ATM straddle is automatically market-neutral, and the associateddelta is zero.
When the price moves up, or down, thedeltabecomes positive, or negative. Thus, to maintain
a market-neutral position, the hedge needs to be adjusted periodically.

Note a major difference between the static and dynamic approaches. Suppose we take a
static straddle position, andSt fluctuates by small amounts very frequently and never leaves
the region[S1, S2] shown in Figure 10-13. Then, the static position will lose money, while
the dynamicdelta-hedged position may make money, depending on the size and frequency of
oscillations inSt.
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3.3. Butterfly

A butterflyis a position that is built usingcombinationsof strangles and straddles. Following the
same idea used throughout the book, once we develop strangle and straddle payoffs as building
blocks, we can then combine them to generate further synthetic payoffs.A long butterfly position
is shown in Figure 10-14. The figure implies the following contractual equation:

Long butterfly = Long ATM straddle + Short k% out-of-the-money strangle (22)

This equation immediately suggests one objective behind butterflies. By selling the strangle,
the trader is, in fact, lowering the cost of buying the straddle. In the case of the short butterfly,
the situation is reversed:

Short butterfly = Short ATM straddle + Long k% out-of-the-money strangle (23)

A short straddle generates premiums but has anunlimiteddownside. This may not be acceptable
to a risk manager. Hence, the trader buys a strangle to limit these potential losses. But this type
of insurance involves costs and the net cash receipts become smaller. The following shows a
practical use of the short butterfly strategy.

Example:

As the Australian dollar continues to strengthen on the back of surging commodity prices,
dealers are looking to take advantage of an anticipated lull in the currency’s bull run
by putting in place butterfly structures. One structure is a three-month butterfly trade.
The dealer sells an at-the-money Aussie dollar call and put against the U.S. dollar, while
buying an Aussie call struck at AUD0.682 and buying puts struck at AUD0.6375. The
structure can be put in place for a premium of 0.3% of notional, noted one trader, adding
that there is value in both the puts and the calls. (Based on an article in Derivatives
Week)

This structure can also be put in place by making sure that the exposure isvega-neutral.
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4. Exotics

Up to this point, the chapter has dealt with option strategies that used onlyplain vanilla calls
and puts. The more complicated volatility building blocks, namely straddles and strangles, were
generated by putting together plain vanilla options with different strike prices or expiration. But
the use of plain vanilla options to take a view on the direction of markets or to trade volatility
may be considered by some as “outdated.” There are now more practical ways of accomplishing
similar objectives.

The general principle is this. Instead of combining plain vanilla options to create desired
payoff diagrams, lower costs, and reach other objectives, a trader woulddirectly design new
option contracts that can do similar things in a “better” fashion. Of course, these new contracts
imply a hedge that is, in general, made of the underlying plain vanilla options, but the new
instruments themselves would sell asexoticoptions.8 Before closing this chapter, we would like

8 The term “exotic” may be misleading. Many of the exotic options have become commoditized and trade as vanilla
products.
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to introduce further option strategies that use exotic options as building blocks. We will look at
a limited number of exotics, although there are many others that we relegate to the exercises at
the end of the chapter.

4.1. Binary, or Digital, Options

To understand binary options, first remember the static strangle and straddle strategies. The idea
was to take a long (short) volatility position, and benefit if the underlying moved more (less)
than what the implied volatility suggested. Binary options formessentialbuilding blocks for
similar volatility strategies, which can be implemented in a cheaper and perhaps more efficient
way. Also, binary options are excellent examples of option engineering. We begin with a brief
description of a European style binary option.

4.1.1. A Binary Call

Consider a European call option with strikeK and expiration timeT . St denotes the underlying
risk. This is a standard call, except that if the option expires at or in-the-money, the payoff will
be either (1) a constant cash amount or (2) a particular asset. In this section, we consider binaries
with cash payoffs only.

Figure 10-15 shows the payoff structure of this call whose time-t price is denoted byCbin(t).
The timeT payoff can be written as

Cbin(T ) =
{

R If K ≤ ST

0 Otherwise (24)

According to this, the binary call holder receives the cash paymentR as long asST is not less
thanK at timeT . Thus, the payoff has aR-or-nothing binary structure. Binary puts are defined
in a similar way.

The diagram in Figure 10-15 shows the intrinsic value of the binary whereR = 1. What
would thetime valueof the binary option look like? It is, in fact, easy to obtain a closed-form
formula that will price binary options. Yet, we prefer to answer this question using financial
engineering. More precisely, we first create asyntheticfor the binary option. The value of the
synthetic should then equal the value of the binary.

The logic in forming the synthetic is the same as before. We have to duplicate the final
payoffs of the binary using other (possibly liquid) instruments, and make sure that the implied
cash flows and the underlying credit risks are the same.

Expiration payoff

time-t value

1

0.5

ST
ST K

R

FIGURE 10-15
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4.1.2. Replicating the Binary Call

Expiration payoff of the binary is displayed by the step function shown in Figure 10-15. Now,
make two additional assumptions. First, assume that the underlyingSt is the price of a futures
contract traded at an exchange, and that the exchange has imposed aminimum tickrule such
that, givenSt, the next instant’s price,St+Δ, can only equal

St+Δ = St ± ih (25)

wherei is an integer, andh is theminimum tickchosen by the exchange. Second, we assume
without any loss of generality that

R = 1 (26)

Under these conditions, the payoff of the binary is a step function that shows a jump of size 1
atST = K.

It is fairly easy to find a replicating portfolio for the binary option under these conditions.
Suppose the market maker buys one vanilla European call with strikeK, and, at the same time,
sells one vanilla European call with strikeK + h on theSt. Figure 10-16 shows the time-T
payoff of this portfolio. The payoff is similar to the step function in Figure 10-15, except that
the height ish, and not 1. But this is easy to fix. Instead of buying and selling 1 unit of each call,

K

Payoff

Payoff

K

ST

ST

Slope 5 11

Slope 5 21

h
minimum

tick

h

h

Call with strike K 1 h

Combined payoff at expiration will be . . .

Call with strike K

FIGURE 10-16
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the market maker can buy and sell1
h units. This implies the approximate contractual equation

Binary call,
strikeK

∼=
Long 1

h
units

of vanilla
K-call

+
Short 1

h
units

of vanilla
(K + h)-call

(27)

The existence of a minimum tick makes this approximation a true equality, since

|St − St+Δ < h|
cannot occur due to minimum tick requirements. We can use this contractual equation and get
two interesting results.

4.1.3. Delta and Price of Binaries

There is an interesting analogy between binary options and thedelta of the constituent plain
vanilla counterparts. Let the price of the vanillaK andK + h calls be denoted byCK(t) and
CK+h(t), respectively. Then,assuming that the volatility parameterσ does not depend onK,
we can leth → 0 in the previous contractual equation, and obtain the exact price of the binary,
Cbin(t), as

Cbin(t) = lim
h→0

CK(t) − CK+h(t)
h

(28)

=
∂CK(t)

∂K
(29)

assuming that the limit exists.
That is to say, at the limit the price of the binary is, in fact, the partial derivative of a vanilla

call with respect to the strike priceK. If all Black-Scholes assumptions hold, we can take this
partial derivative analytically, and obtain9

Cbin(t) =
∂CK(t)

∂K
= e−r(T−t)N(d2) (30)

whered2 is, as usual,

d2 =
Log St

K + r(T − t) − 1
2σ2(T − t)

σ
√

(T − t)
(31)

σ being the constant percentage volatility ofSt, and,r being the constant risk-free spot rate.
This last result shows an interesting similarity between binary option prices and vanilla

option deltas. In Chapter 9 we showed that a vanilla call’sdelta is given by

delta =
∂CK(t)

∂St
= N(d1) (32)

Here we see that the price of the binary has a similar form. Also, it has a shape similar to that of
a probability distribution:

Cbin(t) = e−r(T−t)N(d2) = e−r(T−t)
∫ log St

K
+r(T −t)− 1

2 σ2(T −t)

σ
√

(T −t)

−∞

1√
2π

e− 1
2 u2

du (33)

9 See Appendix 8-1 in Chapter 8.
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This permits us to draw a graph of the binary price,Cbin(t). Under the Black-Scholes
assumptions, it is clear that this price will be as indicated by the S-shaped curve in Figure 10-15.

4.1.4. Time Value of Binaries

We can use the previous result to obtain convexity characteristics of the binary option shown
in Figure 10-15. The deep out-of-the-money binary10 will have a positive price close to zero.
This price will increase and will be around12 when the option becomes at-the-money. On the
other hand, an in-the-money binary will have a price less than one, but approaching it asSt gets
larger and larger. This means that the time value of a European in-the-money binary is negative
for K < SA. TheCbin(t) will never exceed 1 (orR), since a trader would never pay more than
$1 in order to get a chance of earning $1 atT .

From this figure we see that a market maker who buys the binary call will belongvolatility
if the binary is out-of-the-money, but will beshort volatility, if the binary option is in-the-
money. This is because, in the case of an in-the-money option, the curvature of theCK+h(t)
will dominate the curvature of theCK(t), and the binary will have a concave pricing function.
The reverse is true if the binary is out-of-the-money. An ATM binary will be neutral toward
volatility.

To summarize, we see that the price of a binary is similar to thedeltaof a vanilla option.
This implies that thedeltaof thebinary looks like thegammaof a vanilla option. This logic tells
us that thegammaof a binary looks like that in Figure 10-17, and is similar to the third partial
with respect toSt of the vanilla option.

4.1.5. Uses of the Binary

A range optionis constructed using binary puts and calls with the same payoff. This option has
a payoff depending on whether theSt remains within the range[Hmin, Hmax] or not. Thus,
consider the portfolio

Range option = {Long Hmin − Binary call, Short Hmax − Binary call} (34)

The time-T payoff of this range option is shown in Figure 10-18. It is clear that we can use
binary options to generate other, more complicated,range structures.

ST

As St increases
binary gamma will become negative

As St decreases binary will 
        have positive gamma

Gamma
1

2

FIGURE 10-17

10 Remember that the payoff of the binary is still assumed to beR = 1.
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The expiration payoff denoted byCrange(T ) of such a structure will be given by

Crange(T ) =
{

R if Hmin < Su < Hmax u ∈ [t, T ]
0 Otherwise (35)

Thus, in this case, the option pays a constant amountR if Su is range-bound during thewhole
life of the option, otherwise the option pays nothing. The following example illustrates the use
of such binaries.

Example:

Japanese exporters last week were snapping up one- to three-month Japanese yen/U.S.
dollar binary options, struck within a JPY114-119 range, betting that the yen will remain
bound within that range. Buyers of the options get a predetermined payout if the yen
trades within the range, but forfeit a principal if it touches either barrier during the life
of the option. The strategy is similar to buying a yen strangle, although the downside is
capped. (Based on an article in Derivatives Week)

Figure 10-18 illustrates the long binary options mentioned in the example. Looked at from
the angle of yen, the binary options have similarities to selling dollar strangles.11

4.2. Barrier Options

To create a barrier option, we basically take a vanilla counterpart and then add some properly
selectedthresholds. If, during the life of the option, these thresholds are exceeded by the under-
lying, the option payoff will exhibit adiscretechange. The option may beknocked out, or it may
beknocked in, meaning that the option holder either loses the right to exercise or gains it.

Let us consider the two most common cases. We start with a European style plain vanilla
option written on the underlying,St, with strikeK, and expirationT . Next, we consider two
thresholdsHmin andHmax, with Hmin < Hmax. If, during the life of the option,St exceeds
one or both of these limits in some precise ways to be defined, then the optionceases to exist.
Such instruments are calledknock-outoptions. Two examples are shown in Figure 10-19. The
lower part of the diagram is a knock-out call. If, during the life of the option, we observe the
event

Su < Hmin u ∈ [t, T ] (36)

11 Which means buying yen strangles as suggested in the text.
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then the option ceases to exist. In fact, this option isdown-and-out. The upper part of the figure
displays an up-and-out put, which ceases to exist if the event

Hmax < Su u ∈ [t, T ] (37)

is observed.
An option can alsocome into existenceafter some barrier is hit. We then call it aknock-in

option. A knock-in put is shown in Figure 10-20. In this section, we will discuss anH knock-out
call and anH knock-in call with the same strikeK. These barrier options we show here have
the characteristic that when they knock in or out, they will be out-of-the-money. Barrier options
with positive intrinsic value at knock-in and out also exist but are not dealt with. (For these, see
James (2003).)

4.2.1. A Contractual Equation

We can obtain a contractual equation for barrier options and the corresponding vanilla options.
Consider two European-style barrier options with the same strikeK. The underlying risk is
St, and, for simplicity, suppose all Black-Scholes assumptions are satisfied. The first option, a
knock-out call, whose premium is denoted byCO(t), has the standard payoffif theSt never
touches, or falls below the barrierH. The premium of the second option, a knock-in call, is
denoted byCI(t). It entitles its holder to the standard payoff of a vanilla call with strikeK, only
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if St doesfall below the barrierH. These payoffs are shown in Figure 10-21. In each case,H
is such that, when the option knocks in or out, this occurs in a region with zerointrinsic value.

Now consider the following logic that will lead to a contractual equation.

1. Start with the case whereSt is below the barrier,St < H. Here, theSt is already below
the thresholdH. So, the knock-out call is already worthless, while the opposite is true for
the knock-in call. The knock-in isin, and the option holder has already earned the right
to a standard vanilla call payoff. This means that for allSt < H, the knock-in call has
the same value as a vanilla call. These observations mean

For the range St < H, Knock-in + Knock-out = Vanilla call = Knock-in (38)

The knock-out is worthless for this range.
2. Now supposeSt is initially above the barrier,H. There are two possibilities during the

life of the barrier options:St either stays aboveH, or falls belowH. One andonly one
of these events will happen during[t, T ]. This means that, if we buy the knock-in call
simultaneously with a knock-out call, weguaranteeaccess to the payoff of a vanilla call.
In other words,

For the range H < St, Knock-in + Knock-out = Vanilla call (39)

Putting these two payoff ranges together, we obtain the contractual equation:

Vanilla call,
strikeK

= Knock-inK-Call
with barrierH

+ Knock-outK-Call
with barrierH

(40)

From here we can obtain the pricing formulas of the knock-in and knock-out barriers. In
fact, determining the pricing function of onlyoneof these barriers is sufficient to determine the
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price of the other. In Chapter 8, we provided a pricing formula for the knock-out barrier where
the underlying satisfied the Black-Scholes assumptions.12 The formula was given by

CO(t) = C(t) − J(t) for H ≤ St (41)

where

J(t) = St

(
H

St

) 2(r− 1
2 σ2)

σ2 +2

N(c1) − Ke−r(T−t)
(

H

St

) 2(r− 1
2 σ2)

σ2

N(c2) (42)

where

c1,2 =
ln H2

StK
+ (r ± 1

2σ2)(T − t)

σ
√

T − t
(43)

TheC(t) is the value of the vanilla call given by the standard Black-Scholes formula, and the
J(t) is the discount that needs to be applied because the option may disappear ifSt falls below
H during[t, T ].

But we now know from the contractual equation that a long knock-in and a long knock-out
call with the same strikeK and thresholdH is equivalent to a vanilla call:

CO(t) + CI(t) = C(t) (44)

12 It is important to remember that these assumptions preclude a volatility smile. The smile will change the pricing.
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Using equation (41) with this gives the formula for the knock-in price as

CI(t) = J(t) (45)

Thus, the expressions in (42)–(44) provide the necessary pricing formulas for barrier options
that knock-out and in, when they are out-of-the-money under the Black-Scholes assumptions.

It is interesting to note that whenSt touches the barrier,

St = H (46)

the formula forJ(t) reduces to the standard Black-Scholes formula:

J(t) = StN(d1) − Ke−r(T−t)N(d2) (47)

That is to say, the value ofCO(t) will be zero. The knock-out call option price is shown in
Figure 10-21. We see that the knock-out is cheaper than the vanilla option. The discount gets
larger, the closerSt is to the barrier,H. Also, thedeltaof the knock-out is higher everywhere
and is discontinuous atH.

Finally, Figure 10-21 shows the pricing function of the knock-in. To get this graph, all we
need to do is subtractCO(t) from C(t), in the upper part of Figure 10-21. The reader may
wonder why the knock-in call getscheaperasSt moves to the right ofK. After all, doesn’t the
call become more in-the-money? The answer is no, because as long asH < St the holder of the
knock-in doesnothave access to the vanilla payoff yet. In other words, asSt moves rightward,
the chances that the knock-in call holder will end up with a vanilla option are going down.

4.2.2. Some Uses of Barrier Options

Barrier options are quite liquid, especially in FX markets. The following examples discuss the
payoff diagrams associated with barrier options.

The next example illustrates another way knock-ins can be used in currency markets.
Figures 10-20 to 10-22 illustrate these cases.

Example:

U.S. dollar puts (yen calls) were well bid last week. Demand is coming from stop-loss
trading on the back of exotic knock-in structures. At the end of December some players
were seen selling one-month dollar puts struck at JPY119 which knock-in at JPY109.30.
As the yen moved toward that level early last week, those players rushed to buy cover.

Hedge funds were not the only customers looking for cover. Demand for short-term dollar
puts was widely seen. “People are still short yen,” said a trader. “The risk reversal is
four points in favor of the dollar put, which is as high as I have ever seen it” (Based on
an article in Derivatives Week).

According to the example, as the dollar fell toward 110.6 yen, the hedge funds who had
sold knock-in options were suddenly facing the possibility that these options would come into
existence, and that they would lose money.13As a result, the funds started to cover their positions
by buying out-of-the-money puts. This is a good illustration of new risks often associated with
exotic structures. The changes during infinitesimal intervals in mark-to-market values of barrier
options can bediscreteinstead of “gradual.”

13 Assuming that they did not already cover their positions.
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The next example concerning barrier options involves a more complex structure. The barrier
may in fact relate to adifferentrisk than the option’s underlying. The example shows how barrier
options can be used by the airline industry.

Airlines face three basic costs: labor, capital, and fuel. Labor costs can be “fixed” for long
periods using wage contracts. However, both interest rate risk and fuel price risk are floating, and
sudden spikes in these at any time can cause severe harm to an airline. The following example
shows how airlines can hedge these two risks using a single barrier option.

Example:

Although these are slow days in the exotic option market, clients still want alternative
ways to hedge cheaply, particularly if these hedges offer payouts linked to other exposures
on their balance sheets. Barrier products are particularly popular. Corporates are trying
to cheapen their projections by asking for knock-out options.

For example, an airline is typically exposed to both interest rate and fuel price risks. If
interest rates rose above a specified level, a conventional cap would pay out, but under
a barrier structure it may not if the airline is enjoying lower fuel prices. Only if both
rates and fuel prices are high is the option triggered. Consequently, the cost of this type
of hedge is cheaper than separate options linked to individual exposures. (IFR, May 13,
1995).

The use of such barriers may lower hedging costs and may be quite convenient for businesses.
The exercises at the end of the chapter contain further examples of exotic options. In the next
section we discuss some of the new risks and difficulties associated with these.

4.3. New Risks

Exotic options are often inexpensive and convenient, but they carry their own risks. Risk
management of exotic options books is nontrivial because there are (1) discontinuities in
the respective Greeks due to the existence of thresholds, and (2) smile effects in the implied
volatility.

As the previous three chapters have shown, risk management of option books normally uses
various Greeks or their modified counterparts. With threshold effects, some Greeks maynot exist
at the threshold. This introduces discontinuities and complicates risk management. We review
some of these new issues next.

1. Barrier options may exhibit jumps in some Greeks. This is a new dimension in risk
managing option books. When spot is near the threshold, barrier option Greeks may
change discretely even for a small movements in the underlying. These extreme changes
in sensitivity factors make the respectivedelta, gamma, andvega more complicated
tools to use in measuring and managing underlying risks.

2. Barrier options arepath dependent. For example, the threshold may be relevant at each
time point until the option expires or until the barrier is hit.This makes Monte Carlo pricing
and risk managing techniques more delicate and more costly. Also, near the thresholds
the spot may need further simulated trajectories and this may also be costly.

3. Barrier option hedging using vanilla and digital options may be more difficult and may
be strongly influenced bysmile effects.

We will not discuss these risk management and hedging issues related to exotic options in
this book. However, smile effects will be dealt with in Chapter 15.
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5. Quoting Conventions

Quoting conventions in option markets may be very complicated. Given that market makers
look at options as instruments of volatility, they often prefer quoting volatility directly,
rather than a cash value for the option. These quotes can be very confusing at times. The
best way to study them is to consider the case of risk reversals. Risk reversal quotes illus-
trate the role played by volatility, and show explicitly the existence of a skewness in the
volatility smile, an important empirical observation that will be dealt with separately in
Chapter 15.

One of the examples concerning risk reversals presented earlier contained the following
statement:

The one-month risk reversal jumped to 0.81 in favor of euro calls Wednesday from 0.2
two weeks ago.

It is not straightforward to interpret such statements. We conduct the discussion using
the euro/dollar exchange rate as the underlying risk. Consider the dollar calls represented in
Figure 10-22a, where it is assumed that the spot is trading at .95, and that the option is ATM. In
the same figure, we also show a 25-deltacall. Similarly, Figure 10-22b shows an ATM dollar
put and a 25-delta put, which will be out-of-the-money. All these options are supposed to be
plain vanilla and European style.

St 2 K15 1/.95
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1 USD

ATM USD call
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FIGURE 10-22
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Now consider the following quotes for twodifferent25-deltaUSD risk reversals:

Example 1 : “flat/0.3 USD call bid” (48)

Example 2 : “0.3/0.6 USD call bid” (49)

The interpretation of such bid-ask spreads is not straightforward. The numbers in the quotes
do not relate to dollar figures, but tovolatilities. In simple terms, the number to the right of the
slash is thevolatility spreadthe market maker is willing to receive for selling the risk reversal
position and the number to the left is the volatility spread he is willing to pay for the position.

The numbers to the right are related to thesaleby the market maker of the 25-deltaUSD
call and simultaneously thepurchaseof a 25-deltaUSD put, which, from aclient’s point of view
is the risk reversal shown in Figure 10-23a. Note that, for the client, this situation is associated
with “dollar strength.” If the market maker sells this risk reversal, he will beshortthis position.

The numbers to the left of the slash correspond to thepurchaseof a 25-deltaUSD call and the
saleof a 25-deltaUSD put, which is shown in Figure 10-23b. This outcome, when in demand,
is associated with “dollar weakness.”
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Put
premium

EUR per
1 USD

EUR per
1 USD

25-delta
USD call

25-delta
USD put

Call
premium
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Payoff

Payoff
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(b)

FIGURE 10-23
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5.1. Example 1

Now consider the interpretation of the numerical values in the first example:

Example 1 : “flat/0.3 USD call bid” (50)

The left-side in this quote is “flat.” This means that the purchase of the 25-delta USD
call, and a simultaneous sale of the 25-deltaUSD put, would be done at thesame volatilities.
A client who sells this to the market maker pays or receives nothing extra and the deal has “zero
cost.” In other words, the two sides would agree on a single volatility and then plug this same
number into the Black-Scholes formula to obtain the cost of the put and the cost of the call. The
right-hand number in the quote shows abias. It means that the market maker is willing to sell
the 25-deltaUSD call, and buy the 25-deltaUSD put, only if he can earn 0.3 volatility points
net. This implies that the volatility number used in the sale of USD call will be 0.3 points higher
than the volatility used for the 25-deltaUSD put. The market maker thinks that there is a “bias”
in the market in favor of dollar strength; hence, the client who purchases this risk reversal will
incur anetcost.

5.2. Example 2

The second quote given by

Example 2 : “0.3/0.6 USD call bid” (51)

is more complicated to handle, although the interpretation of the 0.6 is similar to the first example.
With this number, the market maker is announcing that he or she needs toreceive0.6 volatility
points net if a client wants to bet on the dollar strength.

However, the left-hand element of the quote is not “flat” anymore but is a positive 0.3. This
implies that the bias in the market, in favor of dollar strength is so large, and so many clients
demand this long position that, now the market maker is willing topaynet 0.3 volatility points
when buying the 25-deltacall and selling the 25-deltaput.

Thus, in risk reversal quotes, the left-hand number is avolatility spread that the market maker
is willing to pay, and the second number is avolatility spread the market maker would like to
earn. In each case, to see how much the underlying options would cost, market participants
have to agree on somebase volatilityand then, using it as a benchmark, bring in the volatility
spreads.

6. Real-World Complications

Actual implementation of the synthetic payoff structures discussed in this chapter requires deal-
ing with several real-world imperfections. First of all, it must be remembered that these positions
are shown at expiration, and that they are piecewise linear. In real life, payoff diagrams may
contain several convexities, which is an equivalent term for nonlinear payoffs. We will review
these briefly.

6.1. The Role of the Volatility Smile

The existence of volatility smile has especially strong effects on pricing and hedging of exotic
options. If a volatility smile exists, the implied volatility becomes a function of the strike priceK.
For example, the expression that gave the binary option price in equations (30)–(31) has to be
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modified to

Cbin(t) = lim
h→0

CK(t) − CK+h(t)
h

(52)

=
∂CK(t)

∂K
+

∂CK(t)
∂σ(K)

∂σ(K)
∂K

(53)

The resulting formula and the analogy to plain vanilladeltas will change. These types of modi-
fications have to be applied to hedging and synthetically creating barrier options as well. Major
modification will also be needed for barrier options.

6.2. Existence of Position Limits

At time t before expiration, an option’s value depends on many variables other than the underly-
ing xt. The volatility ofxt and the risk-free interest ratert are two random variables that affect
all the positions discussed fort < T . This is expressed in the Black-Scholes formula for the
call premium oft < T :

Ct = C(xt, t|σ, r) (54)

which is a function of the “parameters”r, σ. At t = T this formula reduces to

CT = max[xT − K, 0] (55)

Now, if the r andσ are stochastic, then during thet ∈ [0, T ), the positions considered here
will be subject tovegaandrho risks as well. A player who is subject to limits on how much of
these risks he or she can take, may have tounwindthe position beforeT . This is especially true
for positions that havevegarisk. The existence of limits will change the setup of the problem
since, until now, sensitivities with respect to ther andσ parameters, did not enter the decision
to take and maintain the positions discussed.

7. Conclusions

In this chapter we discussed how to synthetically create payoff diagrams for positions that take
a view on the direction of markets and on the direction of volatility. These were static positions.
We specifically concentrated on the payoff diagrams that were functions of a single risk factor
and that were to be replicated by plain vanilla futures and options positions. The second part
of the chapter discussed the engineering of similar positions using simple exotics.

Suggested Reading

There are several excellent books that deal with classic option strategies.Hull (2008) is a very
good start. The reader may also consultJordan (2000) andNatenberg (2008) for option basics.
Das (1997) is a good summary of the details of some of these positions. See also the textbooks
Turnbull and Jarrow (1999),Ritchken (1996),Kolb (1999), andChance and Chance (1997).
Taleb (1996) is a good source on exotics from a market perspective. For a technical approach,
consider the chapter on exotics inMusiela and Ruthkowski (2007).James (2003) is a good
source on the technicalities of option trading and option pricing formulas. It also provides a
good discussion of exotics.
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Exercises

1. Consider abear spread. An investor takes a short position in a futures denoted byxt. But
he or she thinks thatxt will not fall below a levelxmin.

(a) How would you create a position that trades off gains beyond a certain level
against large losses ifxt increases above what is expected?

(b) How much would you pay for this position?
(c) What is the maximum gain? What is the maximum loss?
(d) Show your answers in an appropriate figure.

2. Consider this reading carefully and then answer the questions that follow.

A bank suggested risk reversals to investors that want to hedge their Danish
krone assets, before Denmark’s Sept. 28 referendum on whether to join the
Economic and Monetary Union. A currency options trader in New York said
the strategy would protect customers against the Danish krone weakening
should the Danes vote against joining the EMU. Danish public reports show
that sentiment against joining the EMU has been picking up steam over the
past few weeks, although the “Yes” vote is still slightly ahead. [He] noted
that if the Danes vote for joining the EMU, the local currency would likely
strengthen, but not significantly.

Six- to 12-month risk reversals last Monday were 0.25%/0.45% in favor of
euro calls. [He] said a risk-reversal strategy would be zero cost if a customer
bought a euro call struck at DKK7.52 and sold a euro put at DKK7.44 last
Monday when the Danish krone spot was at DKK7.45 to the euro. The options
are European-style and the tenor is six months.

Last Monday, six- and 12-month euro/Danish krone volatility was at 1.55%/
1.95%, up from 0.6%/0.9% for the whole year until April 10, 2000, owing to
growing bias among Danes against joining the EMU. On the week of April
10, volatility spiked as a couple of banks bought six-month and nine-month,
at-the-money vol. (Based on Derivatives Week, April 24, 2000.)

(a) Plot the zero-cost risk reversal strategy on a diagram. Show the DKK7.44 and
DKK7.52 put and call explicitly.

(b) Note that the spot rate is at DKK7.45. But, this isnot the midpoint between the
two strikes. How can this strategy have zero cost then?

(c) What would this last point suggest about the implied volatilities of the two
options?

(d) What does the statement“Last Monday, six- and 12-month euro/Danish krone
volatility was at 1.55%/1.95%,”mean?

(e) What does at-the-money vol mean? (See the last sentence.) Is there
out-of-the-money vol, then?

3. The following questions deal withrange binaries.These are another example of exotic
options. Read the following carefully and then answer the questions at the end.

Investors are looking to purchase range options. The product is like a straight-
forward range binary in that the holder pays an upfront premium to receive
a fixed pay-off as long as spot maintains a certain range. In contrast to the
regular range binary, however, the barriers only come into existence after a set
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period of time. That is, if spot breaches the range before the barriers become
active, the structure is not terminated.

This way, the buyer will have a short Vega position on high implied volatility
levels. (Based on an article in Derivatives Week).

(a) Display the payoff diagram of a range-binary option.
(b) Why would FX markets find this option especially useful?
(c) When do you think these options will be more useful?
(d) What are the risks of ashortposition in range binaries?

4. Double no-touch optionsis another name for range binaries. Read the following carefully,
and then answer the questions at the end.

Fluctuating U.S. dollar/yen volatility is prompting option traders managing
their books to capture high volatilities through range binary structures while
hedging with butterfly trades. Popular trades include one-year double no touch
options with barriers of JPY126 and JPY102. Should the currency pair stay
within that range, traders could benefit from a USD1 million payout on pre-
miums of 15–20%.

On the back of those trades, there was buying of butterfly structures to hedge
short vol positions. Traders were seen buying out-of-the-money dollar put/yen
calls struck at JPY102 and an out-of-the-money dollar call/yen put struck at
JPY126. (Based on an article in Derivatives Week).

(a) Display the payoff diagram of the structure mentioned in the first paragraph.
(b) When do you think these options will be more useful?
(c) What is the role of butterfly structures in this case?
(d) What are the risks of ashortposition in range binaries?
(e) How much money did such a position make or lose “last Tuesday”?

5. The next question deals with a different type range option, called arange accrualoption.
Range accrual options can be used to take a view on volatility directly. When a trader is
short volatility, the trader expects the actual volatility to be less than the implied volatility.
Yet, within the bounds ofclassicalvolatility analysis, if this view is expressed using a
vanilla option, it may require dynamic hedging, otherwise expensive straddles and must
be bought. Small shops may not be able to allocate the necessary resources for such
dynamic hedging activities.

Instead, range accrual options can be used. Here, the seller of the option receives a
payout that depends on how many days the underlying price has remained within a range
during the life of the option. First read the following comments then answer the questions.

The Ontario Teachers’ Pension Plan Board, with CAD72 billion (USD48.42
billion) under management, is looking at ramping up its use of equity deriva-
tives as it tests programs for range accrual options and options overwriting
on equity portfolios.

The equity derivatives group is looking to step up its use now because it has
recently been awarded additional staff as a result of notching up solid returns,
said a portfolio manager for Canadian equity derivatives. . . . With a staff of
four, two more than previously, the group has time to explore more sophisti-
cated derivatives strategies, a trader explained. Ontario Teachers’is one of the
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biggest and most sophisticated end users in Canada and is seen as an industry
leader among pension funds, according to market officials.

A long position in a range accrual option on a single stock would entail setting
a range for the value of the stock. For every day during the life of the option that
the stock trades within the range, Ontario Teachers would receive a payout. It
is, hence, similar to a short vol position, but the range accrual options do not
require dynamic hedging, and losses are capped at the initial premium outlay.
(Based on an article in Derivatives Week).

(a) How is a range accrual option similar to a strangle or straddle position?
(b) Is the position taken with this option static? Is it dynamic?
(c) In what sense does the range accrual option accomplish what dynamic hedging

strategies accomplish?
(d) How would you synthetically create a range accrual option for other “vanilla”

exotics?


